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Closed-form solution of abrasion and abrasion—dissolution kinetic models
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Abstract

We analyze and solve in closed form the population balance equations describing abrasion-dominated fragmentation processes and
abrasion processes in the presence of chemical dissolution kinetics. The fragmentation model proposed takes into account that abrasion, a
each breakup event, generates a manifold of smaller fragments characterized by a continuous distribution, with the constrain that the mass
of fines produced at each breakup event is constant. The kinetic model for abrasion is applied to experimental data available in the literature.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction whereb(v, w) is a number-based breakage distribution func-
tion, v andw the child and mother particle masses, and
Grinding processes are characterized by several differentc and are three adjustable parameters.
fragmentation regimel]. A broad spectrum of size distri- Homogeneous kernels can hardly yield bimodal distri-
butions results from grinding, depending upon energy input. butions as those resulting from abrasion. For abrasion-
Abrasion results from the application of low-intensity sur- dominated fragmentation, Hansen and Ot{6] proposed
face stresses, which ultimately leads to a bimodal particle a simple impulsive fragmentation kernel describing the bi-
size distribution corresponding to small fragments removed nary fragmentation of a mother particle of masgto two
from the surface of larger fragments. Cleavage and fractureparticles of mass « y andy — ¢, respectively. Although
result from the application of more intense stresses. Cleav-the binary-abrasion model developed by Hansen and Ottino
age produces fragments of size slightly smaller than the suffers from some inconsistencies, it is nonetheless a useful
mother particles. Fracture produces a broad size distributionstarting point for the development of more general models
of child fragments. for a fragmentation process dominated by abrasion, leading
In order to gain a quantitative description of fragmenta- to a continuous distribution of fines.
tion phenomena to be used for process design and optimiza- The aim of this article is to develop and solve in closed
tion, two pieces of information are required: the fragmenta- form an abrasion model which takes into account the fact
tion rate and the number and size of child particles resulting that abrasion, at each breakup event, generates a manifold of
from the breakage of a mother particle, i.e. the fragmenta- fragments (fines) characterized by a continuous distribution.
tion kernel. The fragmentation rate and kernel are typically =~ The article is organized as followSection 2reviews the
determined directly from the experimental data, and several abrasion models available in the literature, and discusses
empirical fragmentation kernels have been obtained for spe-their limitations and drawback&ection 3addresses in de-

cific process units and materigi,3]. tail the abrasion model proposed. In the same section, the
In addition to empirical kernels, some theoretical mod- closed-form solution for the dynamics of the particle distri-
els based on physical arguments have been defifledA bution function is derived. I®ection 4 the model is applied
general homogeneous model for multiple particle breakageto experimental data available in the literature, thus present-
attains the form ing a simple and effective approach for determining model
Oh [ v\I-2 P parameters from the analysis of fragmentation data. Finally,
b(v, w) = o <E) +(1- ¢)E <E> ; 1) Section Sanalyzes the influence of abrasion on the evolution

of a kinetically controlled dissolution process. We develop a
"+ Corresponding author. Tek+39-06-44585609; close_d-f_orm_ solutlon_for_the temporal evolution of _the pa_rt|-
fax: +39-06-44585451. cle distribution function in the presence of both dissolution
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Nomenclature

a(x) fragmentation ratea(x) = a(x)/a(1))

b(x; y) fragmentation kernel

c(x,t) particle distribution function

¢t (x, 1) mother particle distribution

¢ (x,1) fine particle distribution

F(s) Laplace transform of the generic
function f(60)

h(x) pdf of fines generated during abrasion

kq prefactor of the dissolution ratéx)

ks prefactor of the fragmentation raix)

N(y) number of fragments generated by a
particle of masy

r(x) dissolution rate due to chemical reactions
(F(x) = r(x)/a(1))

s Laplace variable

t time

X mass

Xp first-order moment of (x)

x* threshold value for fines

Greek letters

B localization exponent ab (x)

8(x) Dirac’s impulsive distribution

& mass of the fine particle in binary abrasion

0 dimensionless time

K parameter of the homogeneous
fragmentation kernel

A parameter of the homogeneous
fragmentation kernel

n exponent of the fragmentation
rate

¢ parameter of the homogeneous
fragmentation kernel

w(x)  C* compactly supported function
defined byEg. (21)

2. Literature models for abrasion

Let c(x, ) be the distribution function for a mixture of
solid particles so that(x, r) dx is the number of particles
possessing mass betweeandx + dx, at timer.

The population balance equation for linear fragmentation
kinetics can be expressed by the integral equation:

ac(x, 1) _
ot

—a(X)C(x,t)+/ b(x; yya(ye(y, ndy,  (2)

wherea(x) is the fragmentation rate (3), andb(x; y) the

fragmentation kernel representing the number of fragments

of massx resulting from the fragmentation of a particle of
massy.

Under the assumption that the fragmentation rate is pro-

portional to the surface area, it follows thatx) = ksx*,
with © = 2/3.
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Mass conservation implies that:

y
[ xb(x; y)dx =y, 3)
0
and the integral quantity
y
/O b(x; y)dx = N(y) 4)

yields the numberN(y) of fragments obtained from the
breakup of a particle possessing mass

Eq. (3) stems from the fundamental constraint to be
imposed on fragmentation models, i.e. mass conservation,
which can be formally expressed as:

oo
/ x c(x, ) dx = constant forallr > 0. (5)

0

Abrasion is a particular fragmentation process in which
small fragments are generated from the surface breakup of
larger particles, yielding a typical bimodal distribution of
mother particles and fines.

Hansen and Ottin{b,6] have analyzed this phenomenon,
proposing a simple approximate model in the case of binary
abrasion (i.eN(y) = 2). The starting point is the assumption
of an impulsive fragmentation kernel,

b(x;y) =8(x — (y—¢)) +8(x —¢), (6)

wheres(x—xc) is the Dirac’s impulsive distribution centered
atx = x¢. This kernel corresponds to the fragmentation of a
generic particle of masginto two fragments of masg— ¢
ande, wheree > 0 is some constant value such thak y.

By substitutingzq. (6)into Eq. (2) one obtains the follow-
ing functional equation for the particle distribution function:

y=e

ac(x, 1)
ot

=alx+e)cx+e,t) —alx)c(x,t)

+oe=e) [ ey @)
&

The key simplification in the approach envisaged by
Hansen and Ottino stems by approximating the difference
of the two terms at the right-hand side Bf]. (7) by the
corresponding derivative:

a(x + &)c(x + ¢, 1) — ax)c(x, ) >~ 8W’

)
so thatEqg. (7) becomes

dc(x, 1)
ot

:8{

Eq. (9)is particularly appealing due to its simplicity. How-
ever, it needs some formal “make-up” to be fully consistent.
Written as it is,Eq. (9) implies that the partial derivative
termd[a(x)c(x, £)]/ox acts for all values of, and therefore
also forx < ¢. As a consequence of thigg. (9) does not

dla(x)c(x, 1]
0x

S(x — 00
+ (xg 2 / a(y)c(y,wdy}. ©)
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satisfy the fundamental requirement of mass conservationwhich yields a consistent approximation for binary fragmen-
expressed b¥q. (5) To see this, it is sufficient to multiply  tation, satisfying mass conservatig&u. (5) for any initial
each term irEq. (9)by x and integrate over the whole mass choice of the particle distribution function.

range [Q c0), to get Although Eq. (14)may appear rather artificial, it follows
0 straightforwardly from the assumption that the fragmenta-
—/ xc(x, f)dx tion rate vanishes far < ¢, by enforcing the same level of
dr Jo - - approximation for the derivative envisaged by Hansen and
_ _8/ a1 dx—i—ef a()e(x. 1) d Ottino. Since by hypothesis(x) = 0 for x < ¢, it results
0 e a(x) = a(x)n(x—¢). Therefore, the left-hand side Bfj. (8)

€ b d as:
_ . / a)e(x, 1) dr. (10) can be expressed as
0

- - ,t
If the support of the particle distribution function covers the alx +e)n)e +e) — anlx = e)elx, 1)

region of finesx € (0, e)—which is certainly true during an N a(x)n(x — e)c(x, 1)]
abrasion processEg. (10)indicates that the overall mass = ox
decreases in time. a(x)c(x, 1]
Eq. (9) can be straightforwardly modified to overcome =&~ — n(x — &) +ea()c(x. é(x —&)  (16)

this inconsistency by assuming that the derivative term )
dla(x)c(x,N]/dx acts only on particles possessing mass Which isEq. (14)since

greater tharz, thus leading to the balance equation: aetr. D8 — &) = a(e)e(e. NSGx — &),

dc(x, 1) fa(x)c(x, 1] ) ) )
EErvEne el R — n(x—e) To conclude this section, let us briefly address the phys-
5 o ical meaning of the basic assumption on the fragmen-
+ (x_g)f a(y)e(y, 1) dy}, (11) tation ratea(x). Abrasion is essentially associated with

€ x the superficial breakup of large particles due to collisions
wheren(x — x¢) is the Heaviside step function: and mechanical friction. It is fairly reasonable to assume
0 x<uxc that this phenomenon involves exclusively larger particles

nx —xe) = { 1 x> (12) and not fines, so thai(x) = 0 for x < &. in point of

C-

fact this assumption can be viewed as one of the main
However, even this modification leads to an abrasion model qualitative differences between the modelling of abrasion
that is inconsistent from the mass conservation point of view, compared to other fragmentation processes, which can

since fromEq. (11)it follows that: be described by means of homogeneous kernels, such as
d [* 2 Eq. (1)expressing a fragmentation cascade at all the length-
P /O xc(x, t)dx = —&“a(e)c(e, 1). (13) scales.

This result is a consequence of the discontinuity occurring

atx = e.

In point of fact, all these shortcomings can be overcome 3. Generalized abrasion model

by a slight reformulation oEq. (8) By assuming that(x) = ) )
0 for x < &, i.e. that no fragmentation occurs for particles ~ Ed- (15)can be taken as a useful starting point for the
possessing mass less than the threshold valtie approx- development of a more general and consistent model for

imation (8) can be modified as follows: abrasive fragmentation. The need for a model generaliza-
tion stems from its application to experimental (laboratory,
a(x +¢e)c(x + &, 1) —ax)c(x, 1) process) data. In practical applicatiolsy. (15)suffers of

~ e dla(x)c(x, 1] n two main shortcomings:

- d0x
The first term at the right-end side accounts for the approx- ® the fragmentation process described is binary, while abra-
imation forx > e. The second, impulsive term derives from  Sionisintrinsically characterized by the simultaneous gen-

x — &)+ ea(e)c(e, Hé(x —¢). (14)

the discontinuity at = &. eration of a manifold of smaller fragments;

By substitutingEq. (14)into Eq. (7) the following equa-  ® the fragmentation kernélg. (6)generates fines all of the
tion is obtained: same mass, whereas a continuous spectrum of fines is
c(x. 1) da(x)c(x, D] S(x — &) observed in practice.

I A

o In the following two subsections, we develop and solve
% (/ a(y)e(y, ) dy + sa(x)e(x, ,)>} , in closed form a simple model of abrasion, accounting for

x the two issues mentioned above, which may be referred to
(15) as the generalized abrasion model (GAM).
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3.1. Model formulation

Without loss of generality we assume thatepresents
a dimensionless mass, so that= 1 is the dimension-
less mass of the largest particle in the initial particle
mixture.

The model can be derived from the following assump-
tions:

exp

Ov

w(x) =

. There exists a threshold valu& < 1 of x, such that no
fragmentation occurs for < x*. This implies that
a(x) =0,

x < x*.

17)

. Each mother particle of mass > x* breaks up into
(N 4+ 1) fragments: the eroded mother particle of mass
y—x* and a swarm oN fine fragments of masses,-}i’il,
with the constraint

N
D xi=x"
i=1

as depicted irFig. 1 Eq. (18)expresses the elementary
fact that the mass of fines produced at each breakup even
is constant.

(18)

interval [0, x*], according to a given probability density
functionz(x).

These model assumptions, (specifically, assumptions 2 and

3), imply that the fragmentation kernel can be expressed as:
b(x;y) = 8(x — (y — x)) + N h(x), (19)

where h(x) is a compactly supported function defined on
[0, x*] attaining non-negative values. The functiofx) con-

N I y
N
1 N
(V\M\« Q
:o.
\\J Cn boé}gst’
% 07U
N *
y—X {xi} le,=x
=

Fig. 1. Schematic representation of the generalized abrasion process.

. The mass of the abraded fragments is distributed over the
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trols the shape of the distribution of fines generated during
abrasion.
The compact nature of the support over whictxy) is

defined can be ensured by assuming that:
h(x) = h(x)w(x), (20)

whereh(x) is a generic non-negative continuous function,

andw(x) is aC* compactly supported function defined by:
B+

(zx _ x*)z _ (x*)2

|:13+ i| for |x — x*/2| < x*/2,

(21)
elsewhere

The functionw (x) depends on the paramejgrwhich mod-
ulates its shape around= x*. Eq. (21)is the expression
for a classical compactly supported function, widely used in
the theory of distribution as regularization kerfigl. From
Egs. (20) and (21ix follows thath(0) = A(x*) = 0.

The functionz(x) should satisfy some constraints deriving
from model assumptions:

1. The (V + 1)-ary nature of the process implies

y x*
/ b(x;y)dx=N+1—>/ h(x)dx =1, (22)
0 0
that is,i(x) is a normalized probability density function
on [0, x*].
Mass conservatioRq. (3)implies

D.

*

Xn =f xh(x)dx = al
0

*

: (23)

that is the first-order moment, of the distribution/ (x)

equals the ratio between the threshold masand the
number of fine particle®/.

By substituting=q. (19)for the abrasion kernel into the linear
fragmentation equatiofq. (2) one obtains the following
balance equation:

ac(x, 1)
ot

=a(x + xMeclx + x5, ) —alx)c(x, 1)

o0
FNh) [ atew.ndy, (24)
The difference ¢(x + x*)c(x + x*, ) — a(x)c(x, 1)] can
be approximated, as discussedSaction 2 as follows:

al(x +x5e(x +x*, 1) — ax)c(x, 1)
Lola(x)c(x, D] . . % . .
~x Tn(x —x)+x"a(x)c(x™, Hé(x — x7),
(25)

thus introducing an impulsive contributionat= x*. Abra-
sion kinetics yields a continuous distribution of fines poss-
esing an invariant shape, which in the model is proportional
to the probability density functioh(x). This leads to a phys-
ically reasonable approximation f&q. (25) consisting of



A. Adrover et al./Chemical Engineering Journal 94 (2003) 127-137

replacing the impulsive contribution with a smooth term pro-
portional tok(x), which corresponds to the redistribution of
fines according to the invariant pdfx)

x*a(x®e(x*, )8(x — x*) = ba(x")c(x*, Hh(x).

(26)

The parameteb is a constant, the value of which follows
from mass conservation.

By enforcing that the two terms appearing k. (26)
possess the same first-order moment, the constaah be
expressed as:

B (X*)Z
=5
By substitutingegs. (25)—(27into Eq. (24) the following
kinetic model for abrasion is obtained:

de(x, 1) Lola(x)c(x, D] .
o )

b 27)

+h(x) [N [ awendy

%12
+ ﬂa(x*)c(x*, t):| . (28)

Xp
It is straightforward to check thaq. (28) satisfies mass
conservation, i.eEq. (5)

By introducing the dimensionless tinte= tx* a(1) and

the dimensionless fragmentation rate) = a(x)/a(1) (un-
der the hypothesis that1) # 0), Eq. (28)attains the form:

dc(x, 0) dla(x)c(x, 6)]
= nx —
a0 ox

h o0
+ ho [/ a(y)c(y,0)dy
Xh x*

+ x*a(x*)e(x*, 9)i| .

x)

(29)

Itis convenient to subdivide the particle populatigmn, 6)
into two classes, corresponding to the natural discrimina-
tion typical of abrasion processes, namely original mother
particles, characterized by a distribution(x, 9), and fines,
characterized by a distributiat (x, 6):

n { o, x < x*
c(x,0) = .
c(x, 1), x>x
_ c(x, 0, x<ux*
¢ (x,0) = {O’ ot (30)

By enforcing this subdivision, the model equations attain the
form:

AT (x, 0) _ola(x) ct(x,0)]

v > x> x*, (32)
ol O Tt dy
Xh x*
+ xFa(xH et (x*, 9)i| , x < x*. (32)
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The solution oEq. (29)}—or equivalently ogs. (31) and
(32)—is discontinuous at = x*, yet the cumulative mass
fraction M(x, 6)

Jo ye(y, ) dy
Jo© ye(y, 6) dy

is continuous with respect ta

The shape of the functioh(x) is in principle arbitrary,
except that it should fulfill the constrainggs. (22) and
(23). In the particular case of a binary fragmentation, from
Egs. (22) and (23it follows that

M(x, 6) = (33)

* *

/x h(x)dx =1, /x xh(x)dx = x*.
0 0

and the only function satisfying these conditions is a Dirac’s
delta distributioni(x) = 8§(x — x*). In this case, the model
reduces tdeq. (15)discussed irSection 2

The model proposed puts on a formal basis the qualita-
tive approach envisaged by Hansen and Ot{®6], who
solve a binary fragmentation model, thus obtaining a Dirac’s
delta distribution for fines, and then replace, on an intuitive
basis, the singular distribution of fines with a smooth distri-
bution function/ (x), without providing any expression for
the fragmentation kernel and without discussing the basic
constraints on the distribution functidr(x).

(34)

3.2. Closed-form solution

The Generalized Abrasion Model (GAM) developed in
Section 3.1admits a closed-form solution, for any choice
of the fragmentation rate(x) and of the fine pdh(x). The
simplest way to obtain it is to make use of Laplace trans-
forms. Leté™ (x, s) be the Laplace transform of (x, 6). In
the Laplace domairtq. (31)becomes:

dla(et (x, )]
dx ’

wherecg(x) = c(x, 6)|g=0 is the initial particle distribution.

Specifically, we assume that(x) = 0 for x < x*, i.e.

no fines are initially present in the mixture. By defining
g(x,s) = a(x)ct(x, s), Eq. (35)becomes:

s¢T(x, 5) — co(x) = (35)

dg(x,s) _ sg(x,s)

o ) co(x). (36)
By introducing the auxiliary functiorH(x):
H(x) = / = (37)
x a(y)
the solution ofEq. (36)is given by
g(x,s) = Cexpls(H(x) — H(u))]
_ / coy) expl(H(x) — Ho)Idy.  (38)

where(C is a constant and is an arbitrary initial value. By
enforcing the regularity fox — oo, i.e. by lettingu = oo,
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it follows that C = 0 so that:

209 = [ coty expb(H() — HONdy. (39)
The inverse Laplace transform §fx, s) is given by
g(x,0) = / co(y) 86 + H(x) — H(y)) dy, (40)
or equivalently

g(x, 0) = a(w(x, 0)) co(w(x, 0)), (41)
where

w(x, 6) = HY(H(x) + 6). (42)

Correspondingly, the distribution functiom™(x, ) for
mother particles attains the form:

a(w(x, 0)) co(w(x, 6))

a(x) '
Given c™ (x, 6), the distribution functions for fines (x, 6)
can be obtained frorkq. (32)by quadratures, i.e.

ct(x,0) =

(43)

h ] 0
(. 0) = % /0 [ / (. ) colw(y, 0) dy

+ x*a(wx*, 0)) co(w(x*, 0’)):| de’. (44)

In the particular casey(x) admits a power-law expression
a(x) = x*, such as for fragmentation rates proportional to
the particle surface area, it follows that:

Hﬁl(H(x) + 9) == U)()C, 9) = I:x1711v + 9(1 o /L):Il/(l_ﬂ) '

(49)

To provide an example, let us consider a log—hormal shape

for h(x):

wherec andn are two parameters controlling the variance
and the mean of the distribution. The prefactois a nor-
malization constant, such that the integral of the function
h(x) = h(x)w(x) over the interval [0x*] equals 1. For the
localization exponeng characterizing shape of the com-
pactly supported functiom (x), the value8 = 0.01 has been

A

27mx

(In x —n)?

h(x) = 202

exp [— (46)

o

chosen. The value of the dimensionless threshold mass is

set tox* = 0.7.

The shape of the distributioh(x) controls the number
N of fine fragments generated at each erosion event. From
Eq. (23) it follows that N is the ratio between the threshold
massx™ and the first-order moment, of the distribution
h(x). Fig. 2 shows the behavior oV as a function of the
parametenr for two different values o (curve ao = 0.1;
curve b,oc = 1.0). For a giveni(x), the value ofN is
uniquely specified. The results depicted in this figure can be

A. Adrover et al./Chemical Engineering Journal 94 (2003) 127-137

300 T T T T T
200 .
N
a
0 h I "
—6 -5 —4 -3 -2 -1 0
n

Fig. 2. N vs. n for a log—normali(x). Curves a and b refer, respectively,
to o =0.1 and 1.0.

applied in a reverse way: suppose we fix the value ahd
N. From the curves dFig. 2it is possible to read the proper
value ofy giving rise to a prescribed fragmentation process.
Fig. 3A—-D show the behavior of the functionc(x, 6) for
several time instants, starting from the same initial distri-
bution, for two different choices of the parametersaand
n, corresponding to the same value ¥f= 50. The initial
distribution cg(x), has been assumed equal to the product
of w(x)—centered ak = 0.5, i.e. obtained by replacing’
with 0.5 in Eq. (21)}—times a log—normal distribution with
n =2 ando = 0.2.
In order to highlight the behavior of the distributions of
mother particles and fines, the behavior below and abbve
is depicted on two separate figures. It can be observed that,

30 40
30}
/—\2()7 — .
(==) D
2 %20
(5] Q
<10} T
10}
0 0
0.7
(A) (B)
af 40
30+
3 2t ®
= %20}t
Q (5
> i
I 10+
0 0 -
07 08 09 1
© X (D) X

Fig. 3. xc(x, 0) vs. x at several different time instantg,= 0, 0.02, 0.04,
0.06, 0.08, 0.1 for the same initial log—normal distribution and log—normal
behavior of2(x), and for two different values of. Both simulations
refers to the same number of fragments= 50 (* = 0.7). (A) 0 = 0.1,
n=-43; (B) o =1, n =—4.9. Parts A and C show the distribution of
fines and parts B and D show the distribution of mother particles.
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Fig. 4. Log—log plot of cumulative mass fractidd(x, 6) vs. x at several
different time instantsp = 0,0.02, 0.04, 0.06,0.08, 0.1, for the same
initial log—normal distribution (curve a) and log—normal behavior: 6f),
and for two different number of fragment$ = 50, 150 (* = 0.7). (A)
o =0.1, N =50 ( = —4.3, bundle of curve b), anty = 150 (7 = —5.4,
bundle of curve c¢). (By =1, N =50 (n = —4.9, bundle of curve b),
and N = 150 (7 = —6.4, bundle of curve c).

in both cases, the dynamics of mother particle distribution
(x > x*) is identical while the functional form df(x), for
fixed N, modifies the shape of the resulting distribution of
fines.

The effects of the shape @f(x) on the cumulative mass
fraction M(x, 6) are depicted ifrig. 4A and Bfor two differ-
ent values ob and two different values aV. As expected,
higher values otr generate much broader distributions of
fines (comparéig. 4Bfor o = 1 with Fig. 4Afor o = 0.1).

The formal structure of the model is suitable to approach
parameter estimation in a simple and effective way starting
from experimental data of batch fragmentation. This is the
topic of the next section.

4. Analysis of batch fragmentation data

The GAM developed ifsection Hescribes fragmentation
kinetics due to abrasion in which a mother particle breaks up
into N fine fragments, giving rise to a continuous distribution
of fines. Moreover, the shape of the distribution of fines is
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invariant and proportional tb(x), since for any > O:
c (x,0) —c (x,0)
S5 e (.6) — e~ (5, 0] dy

Starting from this observation it is possible to develop a sim-
ple and consistent approach for the analysis of fragmentation
experiments, which yields model parameters and functions
in a straightforward way.

Under the assumption that the fragmentation rate is con-
trolled by the particle surface area, the parameters to be
determined are: (a) the threshold valifeseparating mother
particles and fines; (b) the shape of the functian), cor-
responding to the distribution of fines generated during
abrasion; (c) the time constantl), corresponding to the
fragmentation rate for particles of dimensionless unit mass.

In order to exemplify data analysis resulting from the ap-
plication of the GAM, we consider the breakage of potas-
sium sulfate crystals in an agitated vessel, which displays
a typical abrasion behavior. The data are taken fftfj,
and the reader is referred to this article for further details on
the experimental set-ujig. 5 shows the cumulative mass
distributions at different time instants= 0.5, 1, 4, 6, 10 h.

The initial distribution, (first curve from the bottom in
Fig. 5, corresponding to a time instant 0.5 h), contains a
fraction of fine particles. The values of can be estimated
from the point at which the slope af(x, 6) exhibits a sud-
den change, (in the present cage= 0.3).

The shape ofi(x) can be determined directly from the
experimental data. If experimental data correspond to an
abrasion process, we expect that the differesicéx, 1) —
¢ (x, tg), for t > tp, attains an invariant shape modulo a
multiplicative constant,

¢ (x,) —c (x,t0) = Bh(x), x < x*, (48)

10—
1071
1072
M(z,t)

107?

1074

1075
1073

10°

Fig. 5. Log-log plot of the experimental cumulative mass fractifix, )
vs. x from [11], at several increasing time instant= 0.5, 1, 4, 6, 10 [h].
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Fig. 6. Log-log plot ofc(x, t;) — c(x, f0) Vvs. x (i = 2,3, 4) evaluated ¥
from the interpolation of experimental data 1] depicted inFig. 5 10-4F o J
(to = 0.5h; 1, = 4h; 13 = 6h; 14 = 10h). Line a corresponds to the R
approximated behavior df(x). Eq. (49)modulo a normalization constant.
1()_5 3 .I 1 1 1 R
where B is some positive constant. The reference profile 107 1074 107% 1072 107! 100
¢~ (x, tg) could be in principle arbitrary, and the most natural &
choice is to take the initial profile (in this cage= 0.5h). Fig. 7. Log—log plot of the mass fractioM(x, 7 vs. x obtained by

Fig. 6 shows the behavior of the difference function applying the GAM (continuous line) compared with experimental data
¢ (x,f) —c (x,10) att = 4,6,10h, obtained from the (dots) by[11] at the same time instants.
experimental data depicted Fg. 5. The experimental dif-
ference functions have been obtained from the cumulative
mass fraction distributions depicted fig. 5, upon intepo-
lation, by taking the derivate with respectitand by mul-

5. Fragmentation dissolution processes

tiplying the result by 1x. As can be observed frofig. 6, Fragmentation processes may deeply influence the out-
the basic model assumptidiy. (48)is satisfied, within the ~ come of a chemical dissolution process, as recently observed
range of experimental error. Indeed, for x* (x* = 0.3), by Tsai and Huan{8] who analyzed the interaction between

all data are proportional to a single master curve (curve a abrasion and dissolution of aluminium in a phosphoric acid
in Fig. 6), which can be expressed analytically as follows ~ Solution. General scaling results on the interplay between
b dissolution and fragmentation has been obtained by Edwards
Fo) = AGT, x=xn (49)  etal[9] and Cai et al[10].
AP x> In this section, we analyse the influence of abrasion phe-
nomena on dissolution kinetics, within the framework of the
wherex; = 2 x 1074, b = 2.2 and A is the normalization GAM developed earlier.
constant such that the integral ofx)w(x) equals 1.
Therefore, the value and the expression of the main quan-5 1 Model formulation
tities entering the fragmentation model follow immediately
from the direct analysis of the experimental data.
As a by-product of the direct identification of the distribu-
tion functioni (x), it follows the value ofV, i.e. the number
of fragments generated by a single breakup event, which in
the present case yieldé ~ 600.
For a complete identification of the model we are left dc(x,0)  dla(x)c(x, 0)] .

The balance equation for a dissolution—abrasion process
can be straightforwardly obtained as a generalization of
Eqg. (29) by including the effects of dissolution kinetics,
which contributes as a first-order derivative term:

)+ [r(x)ex, O)]

with estimating the kinetic coefficierly = a(1), i.e. the 00 ox (= ox

prefator entering the expression for the fragmentation rate h(x) e . e x

and controlling the time-scale of the dynamics of the pro- T [fx* a(ye(y, ) dy+x"a(x"e(x ’9)}
cess. The estimate for the prefactprcan be achived with (50)
standard optimization tools and yields, in the present case,

ki = 0.883x 1074h~1. where7(x) = r(x)/a(1) is the dimensionless rate of mass

The comparison of model predictions and experimental loss due to chemical dissolution. In the case of kinetic con-
results is depicted ifrig. 7. As can be observed, the agree- trol of the dissolution process, the dissolution rate) is
ment is satisfactory (small deviations from experimental data proportional to the wetted surface, and the further assump-
can be observed at~ 0.5 at large time-scales & 6 and tion that the particles are spherical yields) = kgx*, so
10 h)) thus showing that the model proposed is able to cap-that7(x) = (kg/ ks)x*.
ture the essence of a fragmentation process controlled by By enforcing the natural decomposition into mother
abrasion. particles and fines, the kinetic mod&lg. (50) can be
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reformulated as follows:
dct(x,0)  3[g(x)ct(x,0)]

% ox =X (51)
ac™ (x, 0)
30
r(x) c(x,0)]  h(x)
= +
0x xn
x [/Oo a(y) ct(y, 0) dy + x* a(x*)c™ (x*, 9)] ,
x < x¥, (52)
where
q(x) = a(x) +7(x). (53)

5.2. Closed-form solution

A closed-form solution for the model of fragmentation—
dissolution developed igection 5.1follows directly from
the analysis developed in the case of pure fragmentation. By
introducing the auxiliary function:

K(x) = f "o (54)
o q(y)
the functionc™ (x, 6) attains the form
o x,6) = q(z(x, 0)) co(z(x, 0)) (55)
’ g(x) ’
where:
2(x,0) = KK (x) +0). (56)

In the particular case of kinetic control, and fragmentation
rates proportional to the external surface,

G(x) = a(x) +7(x) = 1+ a)xt, o= (57)
and the auxiliary function(x, 6) attains the form:

1/(1—p)
20,6) = [ 00— ) A+ )] . (58)

Therefore, under kinetic control of the dissolution process,
the distribution of mother particles is the same as in the case
of a pure abrasion process, but shifted in time by a factor
1+ @).

In a similar way, a closed-form expression for the distri-
bution of finesc™ (x, 6) can be obtained by making use of
Laplace transfoms. Let us define the Laplace transforms:

Fx.9) = L[Fx)c (x.0)], (59)
. 1o
y(x¥, ) ZE[—/ a(y)c(y,0dy
Xho Jx*
+ x*ax®) et 9)} , (60)
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where L[] indicates Laplace transform. In the Laplace do-
main, Eq. (52)attains the form:

0f . x) _ Jis.x)

™ T co(x) — h(x) p(x*, 5). (61)
By introducing the auxiliary function:
X d%-
Nx) = —, 62
@ /o @) ©2)

the solution ofEq. (61)can be expressed as:
Frs) = Fa*,s) @N@-NGO)

x
- / [co(y) + h(y) y(x*, 9)] e sINM-NW)] dy,

(63)

which, in the time domain, becomes:
fx, 0) = flx™, 0 — ¢1(x)) n(6 — 1(x))

+co(p(x, 0)) F(p(x, 6))

+ /: h(My(x*, 0 — p2(x, y))

x (0 — @2(x, y)) dy, (64)
where,
p(x,0) = N"HN) +96), (65)
p1(x) = N(x*) — N(x), (66)
@2(x, y) = N(y) — N(x). (67)

By enforcing the continuity of the flux of particlesat= x*,
f&*,6) = ™ (", OF(x*) = ¢ (x*, 0) g(x™), (68)
we obtain the closed-form expression for the distribution of

fines:

o
o, 0) = 1707910 b 9 1 (1) 00 — p2()

7(x)
4 12O e, 6))
F(x)
1 .
+— h(y(x™, 0 — @a(x,y))
r(x) X

x (0 — @2(x, y)) dy (69)

wherec™ (x, §) is given byEq. (55)

To give a numerical example, we analyze the influence of
kinetically controlled dissolution on the abrasion processes
depicted inFig. 3A-D. The ratioa = kq/ks is set to 2.
Fig. 8A—D show the behavior of c(x, 8) at different time
instants forec = 0.1 ando = 1, respectivelyFig. 9A and
B show the corresponding behavior of the cumulative mass
fraction M(x, 6).

As expected, the distribution of mother particles at tiime
is the same as in the absence of dissolution at fitilet «).
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Fig. 8. xc(x, 0) vs. x for a dissolution—abrasion process £ 2), at different time instant8 = n A9, n = 0, ..., 10, A9 = 0.02 for the same initial

log—normal distribution and log—normal behavior/afc). The distributions of mother particles and fines are reported in two different figures. (A and B)
x* = 0.7,0 =0.1, n= —4.3 (N jad 50). (C and D)x* =07,0=1, n= —4.9 (N = 50).
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Fig. 9. Log—log plot of the cumulative mass fractiad(x, 6) vs. x for a dissolution—abrasion process £ g), at different time instant® = nA9,
n=0,...,10, A6 = 0.02, for the same initial log—normal distribution (curve a) and log—normal behaviar0f (A) x* = 0.7, 0 = 0.1, n = —4.3
(N ~50). (B)x*=0.7,0 =1, n=—-49 (N =50).

Regarding the distribution of fines, we observe that the pres-6. Conclusions

ence of dissolution induces the distribution to move in time

towards lower values of, and generates a progressive broad-  In this paper, we have proposed a simple abrasion model,
ening. Moreover, the value at which the distribution attains referred to as GAM that by generalizing the approach orig-

its local maximum exhibits a non-monotonic behavior in inally developed by Hansen and Ottino for a binary abra-

time. Specifically, this value grows in time at short time sive fragmentation, is able to describe an abrasion process
scales, when the abrasion process starts to generate finegienerating a manifold of smaller fragments distributed ac-

Subsequently, the interplay between dissolution and abra-cording to a continuous spectrum of fines. The model can

sion induces a progressive decrease in time of the maximumbe solved in closed form for any fragmentation rate, and for

abscissa towards zero, as can also be observed from thany suitable choice of the distribution of fines.

analysis of the temporal evolution of the cumulative mass  The fragmentation kernel proposed is not the more gen-

fraction M(x, 6). eral kernel, in that it satisfies the constrain that, at each
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breakup event, the same amount of mass is eroded fromalso for more general cases, e.g. in the case the dissolution
the mother particle. Thus, the distribution of the mother process is controlled by external transport resistances.
particles is influenced solely by the critical mas$s and

does not depend upon the number and distribution of fines.
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