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Closed-form solution of abrasion and abrasion–dissolution kinetic models

Alessandra Adrover, Stefano Cerbelli, Massimiliano Giona∗, Antonio Velardo
Dipartimento di Ingegneria Chimica, Università di Roma “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy

Received 8 October 2002; accepted 11 January 2003

Abstract

We analyze and solve in closed form the population balance equations describing abrasion-dominated fragmentation processes and
abrasion processes in the presence of chemical dissolution kinetics. The fragmentation model proposed takes into account that abrasion, at
each breakup event, generates a manifold of smaller fragments characterized by a continuous distribution, with the constrain that the mass
of fines produced at each breakup event is constant. The kinetic model for abrasion is applied to experimental data available in the literature.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Grinding processes are characterized by several different
fragmentation regimes[1]. A broad spectrum of size distri-
butions results from grinding, depending upon energy input.
Abrasion results from the application of low-intensity sur-
face stresses, which ultimately leads to a bimodal particle
size distribution corresponding to small fragments removed
from the surface of larger fragments. Cleavage and fracture
result from the application of more intense stresses. Cleav-
age produces fragments of size slightly smaller than the
mother particles. Fracture produces a broad size distribution
of child fragments.

In order to gain a quantitative description of fragmenta-
tion phenomena to be used for process design and optimiza-
tion, two pieces of information are required: the fragmenta-
tion rate and the number and size of child particles resulting
from the breakage of a mother particle, i.e. the fragmenta-
tion kernel. The fragmentation rate and kernel are typically
determined directly from the experimental data, and several
empirical fragmentation kernels have been obtained for spe-
cific process units and materials[2,3].

In addition to empirical kernels, some theoretical mod-
els based on physical arguments have been derived[4]. A
general homogeneous model for multiple particle breakage
attains the form

b(v,w) = φλ

w

( v
w

)λ−2 + (1 − φ) κ
w

( v
w

)κ−2
, (1)

∗ Corresponding author. Tel.:+39-06-44585609;
fax: +39-06-44585451.
E-mail address: max@giona.ing.uniroma1.it (M. Giona).

whereb(v,w) is a number-based breakage distribution func-
tion, v andw the child and mother particle masses, andφ,
κ andλ are three adjustable parameters.

Homogeneous kernels can hardly yield bimodal distri-
butions as those resulting from abrasion. For abrasion-
dominated fragmentation, Hansen and Ottino[5,6] proposed
a simple impulsive fragmentation kernel describing the bi-
nary fragmentation of a mother particle of massy into two
particles of massε � y andy − ε, respectively. Although
the binary-abrasion model developed by Hansen and Ottino
suffers from some inconsistencies, it is nonetheless a useful
starting point for the development of more general models
for a fragmentation process dominated by abrasion, leading
to a continuous distribution of fines.

The aim of this article is to develop and solve in closed
form an abrasion model which takes into account the fact
that abrasion, at each breakup event, generates a manifold of
fragments (fines) characterized by a continuous distribution.

The article is organized as follows.Section 2reviews the
abrasion models available in the literature, and discusses
their limitations and drawbacks.Section 3addresses in de-
tail the abrasion model proposed. In the same section, the
closed-form solution for the dynamics of the particle distri-
bution function is derived. InSection 4, the model is applied
to experimental data available in the literature, thus present-
ing a simple and effective approach for determining model
parameters from the analysis of fragmentation data. Finally,
Section 5analyzes the influence of abrasion on the evolution
of a kinetically controlled dissolution process. We develop a
closed-form solution for the temporal evolution of the parti-
cle distribution function in the presence of both dissolution
and abrasion.
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Nomenclature

a(x) fragmentation rate (ã(x) = a(x)/a(1))
b(x; y) fragmentation kernel
c(x, t) particle distribution function
c+(x, t) mother particle distribution
c−(x, t) fine particle distribution
f̂ (s) Laplace transform of the generic

functionf(θ)
h(x) pdf of fines generated during abrasion
kd prefactor of the dissolution rater(x)
kf prefactor of the fragmentation ratea(x)
N(y) number of fragments generated by a

particle of massy
r(x) dissolution rate due to chemical reactions

(r̃(x) = r(x)/a(1))
s Laplace variable
t time
x mass
xh first-order moment ofh(x)
x∗ threshold value for fines

Greek letters
β localization exponent ofω(x)
δ(x) Dirac’s impulsive distribution
ε mass of the fine particle in binary abrasion
θ dimensionless time
κ parameter of the homogeneous

fragmentation kernel
λ parameter of the homogeneous

fragmentation kernel
µ exponent of the fragmentation

rate
φ parameter of the homogeneous

fragmentation kernel
ω(x) C∞ compactly supported function

defined byEq. (21)

2. Literature models for abrasion

Let c(x, t) be the distribution function for a mixture of
solid particles so thatc(x, t)dx is the number of particles
possessing mass betweenx andx+ dx, at timet.

The population balance equation for linear fragmentation
kinetics can be expressed by the integral equation:

∂c(x, t)

∂t
= −a(x)c(x, t)+

∫ ∞

x

b(x; y)a(y)c(y, t)dy, (2)

wherea(x) is the fragmentation rate (s−1), andb(x; y) the
fragmentation kernel representing the number of fragments
of massx resulting from the fragmentation of a particle of
massy.

Under the assumption that the fragmentation rate is pro-
portional to the surface area, it follows thata(x) = kf x

µ,
with µ = 2/3.

Mass conservation implies that:∫ y

0
x b(x; y)dx = y, (3)

and the integral quantity∫ y

0
b(x; y)dx = N(y) (4)

yields the numberN(y) of fragments obtained from the
breakup of a particle possessing massy.

Eq. (3) stems from the fundamental constraint to be
imposed on fragmentation models, i.e. mass conservation,
which can be formally expressed as:∫ ∞

0
x c(x, t)dx = constant, for all t ≥ 0. (5)

Abrasion is a particular fragmentation process in which
small fragments are generated from the surface breakup of
larger particles, yielding a typical bimodal distribution of
mother particles and fines.

Hansen and Ottino[5,6] have analyzed this phenomenon,
proposing a simple approximate model in the case of binary
abrasion (i.e.N(y) = 2). The starting point is the assumption
of an impulsive fragmentation kernel,

b(x; y) = δ(x− (y − ε))+ δ(x− ε), y ≥ ε, (6)

whereδ(x−xc) is the Dirac’s impulsive distribution centered
atx = xc. This kernel corresponds to the fragmentation of a
generic particle of massy into two fragments of massy− ε
andε, whereε > 0 is some constant value such thatε� y.

By substitutingEq. (6)intoEq. (2), one obtains the follow-
ing functional equation for the particle distribution function:

∂c(x, t)

∂t
= a(x+ ε)c(x+ ε, t)− a(x)c(x, t)

+ δ(x− ε)
∫ ∞

ε

a(y)c(y, t)dy. (7)

The key simplification in the approach envisaged by
Hansen and Ottino stems by approximating the difference
of the two terms at the right-hand side ofEq. (7) by the
corresponding derivative:

a(x+ ε)c(x+ ε, t)− a(x)c(x, t) � ε∂[a(x)c(x, t)]
∂x

, (8)

so thatEq. (7)becomes

∂c(x, t)

∂t

= ε
{
∂[a(x)c(x, t)]

∂x
+ δ(x− ε)

ε

∫ ∞

x

a(y)c(y, t)dy

}
. (9)

Eq. (9)is particularly appealing due to its simplicity. How-
ever, it needs some formal “make-up” to be fully consistent.
Written as it is,Eq. (9) implies that the partial derivative
term∂[a(x)c(x, t)]/∂x acts for all values ofx, and therefore
also forx < ε. As a consequence of this,Eq. (9) does not
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satisfy the fundamental requirement of mass conservation
expressed byEq. (5). To see this, it is sufficient to multiply
each term inEq. (9)by x and integrate over the whole mass
range [0,∞), to get

d

dt

∫ ∞

0
x c(x, t)dx

= −ε
∫ ∞

0
a(x)c(x, t)dx+ ε

∫ ∞

ε

a(x)c(x, t)dx

= −ε
∫ ε

0
a(x)c(x, t)dx. (10)

If the support of the particle distribution function covers the
region of fines,x ∈ (0, ε)—which is certainly true during an
abrasion process—Eq. (10) indicates that the overall mass
decreases in time.

Eq. (9) can be straightforwardly modified to overcome
this inconsistency by assuming that the derivative term
∂[a(x)c(x, t)]/∂x acts only on particles possessing mass
greater thanε, thus leading to the balance equation:

∂c(x, t)

∂t
= ε

{
∂[a(x)c(x, t)]

∂x
η(x− ε)

+ δ(x− ε)
ε

∫ ∞

x

a(y)c(y, t)dy

}
, (11)

whereη(x− xc) is the Heaviside step function:

η(x− xc) =
{

0 x < xc

1 x > xc.
(12)

However, even this modification leads to an abrasion model
that is inconsistent from the mass conservation point of view,
since fromEq. (11)it follows that:
d

dt

∫ ∞

0
x c(x, t)dx = −ε2a(ε)c(ε, t). (13)

This result is a consequence of the discontinuity occurring
at x = ε.

In point of fact, all these shortcomings can be overcome
by a slight reformulation ofEq. (8). By assuming thata(x) =
0 for x < ε, i.e. that no fragmentation occurs for particles
possessing mass less than the threshold valueε, the approx-
imation (8) can be modified as follows:

a(x+ ε)c(x+ ε, t)− a(x)c(x, t)
� ε ∂[a(x)c(x, t)]

∂x
η(x− ε)+ εa(ε)c(ε, t)δ(x− ε). (14)

The first term at the right-end side accounts for the approx-
imation forx > ε. The second, impulsive term derives from
the discontinuity atx = ε.

By substitutingEq. (14)into Eq. (7), the following equa-
tion is obtained:
∂c(x, t)

∂t
= ε

{
∂[a(x)c(x, t)]

∂x
η(x− ε)+ δ(x− ε)

ε

×
(∫ ∞

x

a(y)c(y, t)dy + εa(x)c(x, t)
)}
,

(15)

which yields a consistent approximation for binary fragmen-
tation, satisfying mass conservationEq. (5) for any initial
choice of the particle distribution function.

AlthoughEq. (14)may appear rather artificial, it follows
straightforwardly from the assumption that the fragmenta-
tion rate vanishes forx < ε, by enforcing the same level of
approximation for the derivative envisaged by Hansen and
Ottino. Since by hypothesisa(x) = 0 for x < ε, it results
a(x) = a(x)η(x−ε). Therefore, the left-hand side ofEq. (8)
can be expressed as:

a(x+ ε)η(x)c(x+ ε)− a(x)η(x− ε)c(x, t)

� ε∂[a(x)η(x− ε)c(x, t)]
∂x

= ε∂[a(x)c(x, t)]
∂x

η(x− ε)+ εa(x)c(x, t)δ(x− ε) (16)

which isEq. (14)since

a(x)c(x, t)δ(x− ε) = a(ε)c(ε, t)δ(x− ε).
To conclude this section, let us briefly address the phys-
ical meaning of the basic assumption on the fragmen-
tation ratea(x). Abrasion is essentially associated with
the superficial breakup of large particles due to collisions
and mechanical friction. It is fairly reasonable to assume
that this phenomenon involves exclusively larger particles
and not fines, so thata(x) = 0 for x < ε. in point of
fact this assumption can be viewed as one of the main
qualitative differences between the modelling of abrasion
compared to other fragmentation processes, which can
be described by means of homogeneous kernels, such as
Eq. (1)expressing a fragmentation cascade at all the length-
scales.

3. Generalized abrasion model

Eq. (15) can be taken as a useful starting point for the
development of a more general and consistent model for
abrasive fragmentation. The need for a model generaliza-
tion stems from its application to experimental (laboratory,
process) data. In practical applications,Eq. (15)suffers of
two main shortcomings:

• the fragmentation process described is binary, while abra-
sion is intrinsically characterized by the simultaneous gen-
eration of a manifold of smaller fragments;

• the fragmentation kernelEq. (6)generates fines all of the
same massε, whereas a continuous spectrum of fines is
observed in practice.

In the following two subsections, we develop and solve
in closed form a simple model of abrasion, accounting for
the two issues mentioned above, which may be referred to
as the generalized abrasion model (GAM).
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3.1. Model formulation

Without loss of generality we assume thatx represents
a dimensionless mass, so thatx = 1 is the dimension-
less mass of the largest particle in the initial particle
mixture.

The model can be derived from the following assump-
tions:

1. There exists a threshold valuex∗ < 1 of x, such that no
fragmentation occurs forx < x∗. This implies that

a(x) = 0, x < x∗. (17)

2. Each mother particle of massy > x∗ breaks up into
(N + 1) fragments: the eroded mother particle of mass
y−x∗ and a swarm ofN fine fragments of masses{xi}Ni=1,
with the constraint
N∑
i=1

xi = x∗, (18)

as depicted inFig. 1. Eq. (18)expresses the elementary
fact that the mass of fines produced at each breakup event
is constant.

3. The mass of the abraded fragments is distributed over the
interval [0, x∗], according to a given probability density
functionh(x).

These model assumptions, (specifically, assumptions 2 and
3), imply that the fragmentation kernel can be expressed as:

b(x; y) = δ(x− (y − x∗))+N h(x), (19)

whereh(x) is a compactly supported function defined on
[0, x∗] attaining non-negative values. The functionh(x) con-

Fig. 1. Schematic representation of the generalized abrasion process.

trols the shape of the distribution of fines generated during
abrasion.

The compact nature of the support over whichh(x) is
defined can be ensured by assuming that:

h(x) = h̃(x)ω(x), (20)

where h̃(x) is a generic non-negative continuous function,
andω(x) is aC∞ compactly supported function defined by:

ω(x) =

 exp

[
β + β(x∗)2

(2x− x∗)2 − (x∗)2
]
, for |x− x∗/2| < x∗/2,

0, elsewhere,
(21)

The functionω(x) depends on the parameterβ, which mod-
ulates its shape aroundx = x∗. Eq. (21) is the expression
for a classical compactly supported function, widely used in
the theory of distribution as regularization kernel[7]. From
Eqs. (20) and (21)it follows thath(0) = h(x∗) = 0.

The functionh(x) should satisfy some constraints deriving
from model assumptions:

1. The (N + 1)-ary nature of the process implies∫ y

0
b(x; y)dx = N + 1 →

∫ x∗

0
h(x)dx = 1, (22)

that is,h(x) is a normalized probability density function
on [0, x∗].

2. Mass conservationEq. (3) implies

xh =
∫ x∗

0
x h(x)dx = x∗

N
, (23)

that is the first-order momentxh of the distributionh(x)
equals the ratio between the threshold massx∗ and the
number of fine particlesN.

By substitutingEq. (19)for the abrasion kernel into the linear
fragmentation equationEq. (2), one obtains the following
balance equation:

∂c(x, t)

∂t
= a(x+ x∗)c(x+ x∗, t)− a(x)c(x, t)

+N h(x)
∫ ∞

x∗
a(y)c(y, t)dy. (24)

The difference [a(x + x∗)c(x + x∗, t) − a(x)c(x, t)] can
be approximated, as discussed inSection 2, as follows:

a(x+ x∗)c(x+ x∗, t)− a(x)c(x, t)
� x∗ ∂[a(x)c(x, t)]

∂x
η(x− x∗)+x∗ a(x∗)c(x∗, t)δ(x− x∗),

(25)

thus introducing an impulsive contribution atx = x∗. Abra-
sion kinetics yields a continuous distribution of fines poss-
esing an invariant shape, which in the model is proportional
to the probability density functionh(x). This leads to a phys-
ically reasonable approximation forEq. (25), consisting of
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replacing the impulsive contribution with a smooth term pro-
portional toh(x), which corresponds to the redistribution of
fines according to the invariant pdfh(x)

x∗ a(x∗)c(x∗, t)δ(x− x∗)→ b a(x∗)c(x∗, t)h(x). (26)

The parameterb is a constant, the value of which follows
from mass conservation.

By enforcing that the two terms appearing inEq. (26)
possess the same first-order moment, the constantb can be
expressed as:

b = (x∗)2

xh
. (27)

By substitutingEqs. (25)–(27)into Eq. (24), the following
kinetic model for abrasion is obtained:

∂c(x, t)

∂t
= x∗ ∂[a(x)c(x, t)]

∂x
η(x− x∗)

+h(x)
[
N

∫ ∞

x∗
a(y)c(y, t)dy

+ (x∗)2

xh
a(x∗)c(x∗, t)

]
. (28)

It is straightforward to check thatEq. (28) satisfies mass
conservation, i.e.Eq. (5).

By introducing the dimensionless timeθ = tx∗ a(1) and
the dimensionless fragmentation rateã(x) = a(x)/a(1) (un-
der the hypothesis thata(1) �= 0), Eq. (28)attains the form:

∂c(x, θ)

∂θ
= ∂[ã(x)c(x, θ)]

∂x
η(x− x∗)

+ h(x)

xh

[∫ ∞

x∗
ã(y)c(y, θ) dy

+ x∗ ã(x∗)c(x∗, θ)
]
. (29)

It is convenient to subdivide the particle populationc(x, θ)
into two classes, corresponding to the natural discrimina-
tion typical of abrasion processes, namely original mother
particles, characterized by a distributionc+(x, θ), and fines,
characterized by a distributionc−(x, θ):

c+(x, θ) =
{

0, x < x∗

c(x, t), x ≥ x∗ ,

c−(x, θ) =
{
c(x, t), x < x∗

0, x ≥ x∗ , (30)

By enforcing this subdivision, the model equations attain the
form:

∂c+(x, θ)
∂θ

= ∂[ã(x) c+(x, θ)]
∂x

, x > x∗, (31)

∂c−(x, θ)
∂θ

= h(x)

xh

[∫ ∞

x∗
ã(y) c+(y, θ)dy

+ x∗ ã(x∗)c+(x∗, θ)
]
, x < x∗. (32)

The solution ofEq. (29)—or equivalently ofEqs. (31) and
(32)—is discontinuous atx = x∗, yet the cumulative mass
fractionM(x, θ)

M(x, θ) =
∫ x

0 yc(y, θ)dy∫ ∞
0 yc(y, θ)dy

(33)

is continuous with respect tox.
The shape of the functionh(x) is in principle arbitrary,

except that it should fulfill the constraintsEqs. (22) and
(23). In the particular case of a binary fragmentation, from
Eqs. (22) and (23)it follows that∫ x∗

0
h(x)dx = 1,

∫ x∗

0
x h(x)dx = x∗. (34)

and the only function satisfying these conditions is a Dirac’s
delta distribution,h(x) = δ(x− x∗). In this case, the model
reduces toEq. (15)discussed inSection 2.

The model proposed puts on a formal basis the qualita-
tive approach envisaged by Hansen and Ottino[5,6], who
solve a binary fragmentation model, thus obtaining a Dirac’s
delta distribution for fines, and then replace, on an intuitive
basis, the singular distribution of fines with a smooth distri-
bution functionh(x), without providing any expression for
the fragmentation kernel and without discussing the basic
constraints on the distribution functionh(x).

3.2. Closed-form solution

The Generalized Abrasion Model (GAM) developed in
Section 3.1admits a closed-form solution, for any choice
of the fragmentation ratea(x) and of the fine pdfh(x). The
simplest way to obtain it is to make use of Laplace trans-
forms. Letĉ+(x, s) be the Laplace transform ofc+(x, θ). In
the Laplace domain,Eq. (31)becomes:

s ĉ+(x, s)− c0(x) = d[ã(x)ĉ+(x, s)]
dx

, (35)

wherec0(x) = c(x, θ)|θ=0 is the initial particle distribution.
Specifically, we assume thatc0(x) = 0 for x < x∗, i.e.
no fines are initially present in the mixture. By defining
ĝ(x, s) = ã(x)ĉ+(x, s), Eq. (35)becomes:

dĝ(x, s)

dx
= s ĝ(x, s)

ã(x)
− c0(x). (36)

By introducing the auxiliary functionH(x):

H(x) =
∫ x

x∗

dy

ã(y)
, (37)

the solution ofEq. (36)is given by

ĝ(x, s) = C exp[s(H(x)−H(u))]
−

∫ x

u

c0(y)exp[s(H(x)−H(y))] dy, (38)

whereC is a constant andu is an arbitrary initial value. By
enforcing the regularity forx → ∞, i.e. by lettingu = ∞,
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it follows thatC = 0 so that:

ĝ(x, s) =
∫ ∞

x

c0(y)exp[s(H(x)−H(y))] dy. (39)

The inverse Laplace transform ofĝ(x, s) is given by

g(x, θ) =
∫ ∞

x

c0(y) δ(θ +H(x)−H(y))dy, (40)

or equivalently

g(x, θ) = ã(w(x, θ)) c0(w(x, θ)), (41)

where

w(x, θ) = H−1(H(x)+ θ). (42)

Correspondingly, the distribution functionc+(x, θ) for
mother particles attains the form:

c+(x, θ) = ã(w(x, θ)) c0(w(x, θ))

ã(x)
. (43)

Given c+(x, θ), the distribution functions for finesc−(x, θ)
can be obtained fromEq. (32)by quadratures, i.e.

c−(x, θ) = h(x)

xh

∫ θ

0

[∫ ∞

x∗
ã(w(y, θ′)) c0(w(y, θ′))dy

+ x∗ ã(w(x∗, θ′)) c0(w(x∗, θ′))
]

dθ′. (44)

In the particular case,̃a(x) admits a power-law expression
ã(x) = xµ, such as for fragmentation rates proportional to
the particle surface area, it follows that:

H−1(H(x)+ θ) = w(x, θ) =
[
x1−µ + θ(1 − µ)

]1/(1−µ)
.

(45)

To provide an example, let us consider a log–normal shape
for h̃(x):

h̃(x) = A

σ
√

2πx
exp

[
− ( ln x− η)2

2σ2

]
, (46)

whereσ andη are two parameters controlling the variance
and the mean of the distribution. The prefactorA is a nor-
malization constant, such that the integral of the function
h(x) = h̃(x)ω(x) over the interval [0, x∗] equals 1. For the
localization exponentβ characterizing shape of the com-
pactly supported functionω(x), the valueβ = 0.01 has been
chosen. The value of the dimensionless threshold mass is
set tox∗ = 0.7.

The shape of the distributionh(x) controls the number
N of fine fragments generated at each erosion event. From
Eq. (23), it follows thatN is the ratio between the threshold
massx∗ and the first-order momentxh of the distribution
h(x). Fig. 2 shows the behavior ofN as a function of the
parameterη for two different values ofσ (curve a,σ = 0.1;
curve b,σ = 1.0). For a givenh(x), the value ofN is
uniquely specified. The results depicted in this figure can be

Fig. 2.N vs. η for a log–normalh̃(x). Curves a and b refer, respectively,
to σ = 0.1 and 1.0.

applied in a reverse way: suppose we fix the value ofσ and
N. From the curves ofFig. 2 it is possible to read the proper
value ofη giving rise to a prescribed fragmentation process.

Fig. 3A–Dshow the behavior of the functionx c(x, θ) for
several time instants, starting from the same initial distri-
bution, for two different choices of the parametersσ and
η, corresponding to the same value ofN = 50. The initial
distribution c0(x), has been assumed equal to the product
of ω(x)—centered atx = 0.5, i.e. obtained by replacingx∗
with 0.5 in Eq. (21)—times a log–normal distribution with
η = 2 andσ = 0.2.

In order to highlight the behavior of the distributions of
mother particles and fines, the behavior below and abovex∗
is depicted on two separate figures. It can be observed that,

Fig. 3. x c(x, θ) vs. x at several different time instants,θ = 0,0.02,0.04,
0.06,0.08,0.1 for the same initial log–normal distribution and log–normal
behavior of h̃(x), and for two different values ofσ. Both simulations
refers to the same number of fragmentsN = 50 (x∗ = 0.7). (A) σ = 0.1,
η = −4.3; (B) σ = 1, η = −4.9. Parts A and C show the distribution of
fines and parts B and D show the distribution of mother particles.
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Fig. 4. Log–log plot of cumulative mass fractionM(x, θ) vs. x at several
different time instants,θ = 0,0.02,0.04,0.06,0.08,0.1, for the same
initial log–normal distribution (curve a) and log–normal behavior ofh̃(x),
and for two different number of fragmentsN = 50,150 (x∗ = 0.7). (A)
σ = 0.1,N = 50 (η = −4.3, bundle of curve b), andN = 150 (η = −5.4,
bundle of curve c). (B)σ = 1, N = 50 (η = −4.9, bundle of curve b),
andN = 150 (η = −6.4, bundle of curve c).

in both cases, the dynamics of mother particle distribution
(x > x∗) is identical while the functional form ofh(x), for
fixedN, modifies the shape of the resulting distribution of
fines.

The effects of the shape ofh(x) on the cumulative mass
fractionM(x, θ) are depicted inFig. 4A and Bfor two differ-
ent values ofσ and two different values ofN. As expected,
higher values ofσ generate much broader distributions of
fines (compareFig. 4Bfor σ = 1 with Fig. 4A for σ = 0.1).

The formal structure of the model is suitable to approach
parameter estimation in a simple and effective way starting
from experimental data of batch fragmentation. This is the
topic of the next section.

4. Analysis of batch fragmentation data

The GAM developed inSection 3describes fragmentation
kinetics due to abrasion in which a mother particle breaks up
intoN fine fragments, giving rise to a continuous distribution
of fines. Moreover, the shape of the distribution of fines is

invariant and proportional toh(x), since for anyθ > 0:

c−(x, θ)− c−(x,0)∫ x∗
0 [c−(y, θ)− c−(y,0)] dy

= h(x), (47)

Starting from this observation it is possible to develop a sim-
ple and consistent approach for the analysis of fragmentation
experiments, which yields model parameters and functions
in a straightforward way.

Under the assumption that the fragmentation rate is con-
trolled by the particle surface area, the parameters to be
determined are: (a) the threshold valuex∗, separating mother
particles and fines; (b) the shape of the functionh(x), cor-
responding to the distribution of fines generated during
abrasion; (c) the time constanta(1), corresponding to the
fragmentation rate for particles of dimensionless unit mass.

In order to exemplify data analysis resulting from the ap-
plication of the GAM, we consider the breakage of potas-
sium sulfate crystals in an agitated vessel, which displays
a typical abrasion behavior. The data are taken from[11],
and the reader is referred to this article for further details on
the experimental set-up.Fig. 5 shows the cumulative mass
distributions at different time instantst = 0.5,1,4,6,10 h.

The initial distribution, (first curve from the bottom in
Fig. 5, corresponding to a time instantt = 0.5 h), contains a
fraction of fine particles. The values ofx∗ can be estimated
from the point at which the slope ofM(x, θ) exhibits a sud-
den change, (in the present casex∗ = 0.3).

The shape ofh(x) can be determined directly from the
experimental data. If experimental data correspond to an
abrasion process, we expect that the differencec−(x, t) −
c−(x, t0), for t > t0, attains an invariant shape modulo a
multiplicative constant,

c−(x, t)− c−(x, t0) = Bh(x), x < x∗, (48)

Fig. 5. Log–log plot of the experimental cumulative mass fractionM(x, t)

vs. x from [11], at several increasing time instant,t = 0.5,1,4,6,10 [h].
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Fig. 6. Log–log plot ofc(x, ti) − c(x, t0) vs. x (i = 2,3,4) evaluated
from the interpolation of experimental data by[11] depicted inFig. 5
(t0 = 0.5 h; t2 = 4 h; t3 = 6 h; t4 = 10 h). Line a corresponds to the
approximated behavior of̃h(x). Eq. (49)modulo a normalization constant.

whereB is some positive constant. The reference profile
c−(x, t0) could be in principle arbitrary, and the most natural
choice is to take the initial profile (in this caset0 = 0.5 h).

Fig. 6 shows the behavior of the difference function
c−(x, t) − c−(x, t0) at t = 4,6,10 h, obtained from the
experimental data depicted inFig. 5. The experimental dif-
ference functions have been obtained from the cumulative
mass fraction distributions depicted inFig. 5, upon intepo-
lation, by taking the derivate with respect tox and by mul-
tiplying the result by 1/x. As can be observed fromFig. 6,
the basic model assumptionEq. (48)is satisfied, within the
range of experimental error. Indeed, forx < x∗ (x∗ = 0.3),
all data are proportional to a single master curve (curve a
in Fig. 6), which can be expressed analytically as follows

h̃(x) =
{

Ax−b
1 , x ≤ x1

Ax−b, x > x1

(49)

wherex1 = 2 × 10−4, b = 2.2 andA is the normalization
constant such that the integral ofh̃(x)ω(x) equals 1.

Therefore, the value and the expression of the main quan-
tities entering the fragmentation model follow immediately
from the direct analysis of the experimental data.

As a by-product of the direct identification of the distribu-
tion functionh(x), it follows the value ofN, i.e. the number
of fragments generated by a single breakup event, which in
the present case yieldsN � 600.

For a complete identification of the model we are left
with estimating the kinetic coefficientkf = a(1), i.e. the
prefator entering the expression for the fragmentation rate
and controlling the time-scale of the dynamics of the pro-
cess. The estimate for the prefactorkf can be achived with
standard optimization tools and yields, in the present case,
kf = 0.883× 10−4 h−1.

The comparison of model predictions and experimental
results is depicted inFig. 7. As can be observed, the agree-
ment is satisfactory (small deviations from experimental data
can be observed atx � 0.5 at large time-scales (t = 6 and
10 h)) thus showing that the model proposed is able to cap-
ture the essence of a fragmentation process controlled by
abrasion.

Fig. 7. Log–log plot of the mass fractionM(x, t) vs. x obtained by
applying the GAM (continuous line) compared with experimental data
(dots) by[11] at the same time instants.

5. Fragmentation dissolution processes

Fragmentation processes may deeply influence the out-
come of a chemical dissolution process, as recently observed
by Tsai and Huang[8] who analyzed the interaction between
abrasion and dissolution of aluminium in a phosphoric acid
solution. General scaling results on the interplay between
dissolution and fragmentation has been obtained by Edwards
et al. [9] and Cai et al.[10].

In this section, we analyse the influence of abrasion phe-
nomena on dissolution kinetics, within the framework of the
GAM developed earlier.

5.1. Model formulation

The balance equation for a dissolution–abrasion process
can be straightforwardly obtained as a generalization of
Eq. (29), by including the effects of dissolution kinetics,
which contributes as a first-order derivative term:

∂c(x, θ)

∂θ
= ∂[ã(x)c(x, θ)]

∂x
η(x− x∗)+ ∂[r̃(x)c(x, θ)]

∂x

+ h(x)

xh

[∫ ∞

x∗
ã(y)c(y, θ) dy+x∗ ã(x∗)c(x∗, θ)

]
(50)

where r̃(x) = r(x)/a(1) is the dimensionless rate of mass
loss due to chemical dissolution. In the case of kinetic con-
trol of the dissolution process, the dissolution rater(x) is
proportional to the wetted surface, and the further assump-
tion that the particles are spherical yieldsr(x) = kdx

µ, so
that r̃(x) = (kd/kf )x

µ.
By enforcing the natural decomposition into mother

particles and fines, the kinetic modelEq. (50) can be
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reformulated as follows:

∂c+(x, θ)
∂θ

= ∂[q̃(x) c+(x, θ)]
∂x

, x ≥ x∗, (51)

∂c−(x, θ)
∂θ

= ∂[r̃(x) c−(x, θ)]
∂x

+ h(x)

xh

×
[∫ ∞

x∗
ã(y) c+(y, θ)dy + x∗ ã(x∗)c+(x∗, θ)

]
,

x < x∗, (52)

where

q̃(x) = ã(x)+ r̃(x). (53)

5.2. Closed-form solution

A closed-form solution for the model of fragmentation–
dissolution developed inSection 5.1follows directly from
the analysis developed in the case of pure fragmentation. By
introducing the auxiliary function:

K(x) =
∫ x

x∗

dy

q̃(y)
, (54)

the functionc+(x, θ) attains the form

c+(x, θ) = q̃(z(x, θ)) c0(z(x, θ))

q̃(x)
, (55)

where:

z(x, θ) = K−1(K(x)+ θ). (56)

In the particular case of kinetic control, and fragmentation
rates proportional to the external surface,

q̃(x) = ã(x)+ r̃(x) = (1 + α)xµ, α = kd

kf
, (57)

and the auxiliary functionz(x, θ) attains the form:

z(x, θ) =
[
x1−µ + θ(1 − µ) (1 + α)

]1/(1−µ)
. (58)

Therefore, under kinetic control of the dissolution process,
the distribution of mother particles is the same as in the case
of a pure abrasion process, but shifted in time by a factor
(1 + α).

In a similar way, a closed-form expression for the distri-
bution of finesc−(x, θ) can be obtained by making use of
Laplace transfoms. Let us define the Laplace transforms:

f̂ (x, s) = L [
r̃(x) c−(x, θ)

]
, (59)

γ̂(x∗, s) = L
[

1

xh

∫ ∞

x∗
ã(y) c+(y, θ)dy

+ x∗ ã(x∗) c+(x∗, θ)
]
, (60)

whereL[·] indicates Laplace transform. In the Laplace do-
main,Eq. (52)attains the form:

∂f̂ (s, x)

∂x
= s f̂ (s, x)

r̃(x)
− c0(x)− h(x) γ̂(x∗, s). (61)

By introducing the auxiliary function:

N(x) =
∫ x

0

dξ

r̃(ξ)
, (62)

the solution ofEq. (61)can be expressed as:

f̂ (x, s) = f̂ (x∗, s)es[N(x)−N(x∗)]

−
∫ x

x∗
[c0(y)+ h(y) γ(x∗, s)] e−s[N(y)−N(x)] dy,

(63)

which, in the time domain, becomes:

f(x, θ) = f(x∗, θ − ϕ1(x)) η(θ − ϕ1(x))

+ c0(p(x, θ)) r̃(p(x, θ))

+
∫ x∗

x

h(y)γ(x∗, θ − ϕ2(x, y))

× η(θ − ϕ2(x, y))dy, (64)

where,

p(x, θ) = N−1(N(x)+ θ), (65)

ϕ1(x) = N(x∗)−N(x), (66)

ϕ2(x, y) = N(y)−N(x). (67)

By enforcing the continuity of the flux of particles atx = x∗,

f(x∗, θ) = c−(x∗, θ)r̃(x∗) = c+(x∗, θ) q̃(x∗), (68)

we obtain the closed-form expression for the distribution of
fines:

c−(x, θ)= q̃(x
∗, θ−ϕ1(x))

r̃(x)
c+(x∗, θ − ϕ1(x)) η(θ − ϕ1(x))

+ r̃(p(x, θ))

r̃(x)
c0(p(x, θ))

+ 1

r̃(x)

∫ x∗

x

h(y)γ(x∗, θ − ϕ2(x, y))

× η(θ − ϕ2(x, y))dy (69)

wherec+(x, θ) is given byEq. (55).
To give a numerical example, we analyze the influence of

kinetically controlled dissolution on the abrasion processes
depicted inFig. 3A–D. The ratioα = kd/kf is set to 2.
Fig. 8A–D show the behavior ofx c(x, θ) at different time
instants forσ = 0.1 andσ = 1, respectively.Fig. 9A and
B show the corresponding behavior of the cumulative mass
fractionM(x, θ).

As expected, the distribution of mother particles at timeθ
is the same as in the absence of dissolution at timeθ (1+α).
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Fig. 8. x c(x, θ) vs. x for a dissolution–abrasion process (α = 2), at different time instantsθ = n4θ, n = 0, . . . ,10, 4θ = 0.02 for the same initial
log–normal distribution and log–normal behavior ofh̃(x). The distributions of mother particles and fines are reported in two different figures. (A and B)
x∗ = 0.7, σ = 0.1, η = −4.3 (N � 50). (C and D)x∗ = 0.7, σ = 1, η = −4.9 (N = 50).

Fig. 9. Log–log plot of the cumulative mass fractionM(x, θ) vs. x for a dissolution–abrasion process (α = 2), at different time instantsθ = n4θ,
n = 0, . . . ,10, 4θ = 0.02, for the same initial log–normal distribution (curve a) and log–normal behavior ofh̃(x). (A) x∗ = 0.7, σ = 0.1, η = −4.3
(N � 50). (B) x∗ = 0.7, σ = 1, η = −4.9 (N = 50).

Regarding the distribution of fines, we observe that the pres-
ence of dissolution induces the distribution to move in time
towards lower values ofx, and generates a progressive broad-
ening. Moreover, the value at which the distribution attains
its local maximum exhibits a non-monotonic behavior in
time. Specifically, this value grows in time at short time
scales, when the abrasion process starts to generate fines.
Subsequently, the interplay between dissolution and abra-
sion induces a progressive decrease in time of the maximum
abscissa towards zero, as can also be observed from the
analysis of the temporal evolution of the cumulative mass
fractionM(x, θ).

6. Conclusions

In this paper, we have proposed a simple abrasion model,
referred to as GAM that by generalizing the approach orig-
inally developed by Hansen and Ottino for a binary abra-
sive fragmentation, is able to describe an abrasion process
generating a manifold of smaller fragments distributed ac-
cording to a continuous spectrum of fines. The model can
be solved in closed form for any fragmentation rate, and for
any suitable choice of the distribution of fines.

The fragmentation kernel proposed is not the more gen-
eral kernel, in that it satisfies the constrain that, at each



A. Adrover et al. / Chemical Engineering Journal 94 (2003) 127–137 137

breakup event, the same amount of mass is eroded from
the mother particle. Thus, the distribution of the mother
particles is influenced solely by the critical massx∗ and
does not depend upon the number and distribution of fines.
However, the formal structure of the model can be applied
in a straightforward way to batch fragmentation data, and
the value/expression for the parameters/functions entering
the model can be easily and accurately recovered from the
experimental data. The comparison between model predic-
tions and experimental data available in the literature is
satisfactory.

The proposed abrasion model proves a useful tool to in-
vestigate the influence of abrasion on dissolution processes.
We have addressed the generalization of GAM to include
dissolution kinetics. The resulting population balance has
been solved in closed form for a kinetically controlled dis-
solution process. A closed-form solution can be obtained

also for more general cases, e.g. in the case the dissolution
process is controlled by external transport resistances.
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